Orthogonal polynomial expansions on sparse grids
نویسندگان
چکیده
We study the orthogonal polynomial expansion on sparse grids for a function of d variables in a weighted L space. A fast algorithm is developed to compute the orthogonal polynomial expansion by combining the fast cosine transform, a fast transform from the Chebyshev orthogonal polynomial basis to the orthogonal polynomial basis for the weighted L space, and a fast algorithm of computing hierarchically structured basis functions. The total number of arithmetic operations used in the algorithm is O(n log n) where n is the highest polynomial degree in one dimension. The exponential convergence of the approximation for the analytic function is investigated. Specifically, we show the sub-exponential convergence for analytic functions and moreover we prove the approximation order is optimal for the Chebyshev orthogonal polynomial expansion. We furthermore establish the fully exponential convergence for functions with a somewhat stronger analytic assumption. Numerical experiments confirm the theoretical results and demonstrate the efficiency of the proposed algorithm.
منابع مشابه
A Fast Algorithm for Orthogonal Polynomial Expansions on Sparse Grids∗
A fast algorithm is developed to compute orthogonal polynomial expansions on sparse grids for a function of d variables in a weighted L space. The proposed algorithm combines the fast cosine transform, a fast transform from the Chebyshev orthogonal polynomial basis to the orthogonal polynomial basis for the weighted L space and a fast algorithm of computing hierarchically structured basis funct...
متن کاملA Spectral Method via Orthogonal Polynomial Expansions on Sparse Grids for Solving Stochastic Partial Differential Equations
Most mathematical models contain uncertainties that may be originated from various sources such as initial and boundary conditions, geometry representation of the domain and input parameters. When these sources are expressed as random processes or random fields, partial differential equations describing the underlying models become stochastic partial differential equations (SPDEs). Stochastic m...
متن کاملA Generalized Sampling and Preconditioning Scheme for Sparse Approximation of Polynomial Chaos Expansions
We propose an algorithm for recovering sparse orthogonal polynomial expansions via collocation. A standard sampling approach for recovering sparse polynomials uses Monte Carlo sampling, from the density of orthogonality, which results in poor function recovery when the polynomial degree is high. Our proposed approach aims to mitigate this limitation by sampling with respect to the weighted equi...
متن کاملDesign under Uncertainty Employing Stochastic Expansion Methods
Nonintrusive polynomial chaos expansion (PCE) and stochastic collocation (SC) methods are attractive techniques for uncertainty quantification due to their fast convergence properties and ability to produce functional representations of stochastic variability. PCE estimates coefficients for known orthogonal polynomial basis functions based on a set of response function evaluations, using sampli...
متن کاملStochastic Collocation Methods on Unstructured Grids in High Dimensions via Interpolation
In this paper we propose a method for conducting stochastic collocation on arbitrary sets of nodes. To accomplish this, we present the framework of least orthogonal interpolation, which allows one to construct interpolation polynomials based on arbitrarily located grids in arbitrary dimensions. These interpolation polynomials are constructed as a subspace of the family of orthogonal polynomials...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Complexity
دوره 30 شماره
صفحات -
تاریخ انتشار 2014